Обсудить на форуме

Стабилизированный источник питания для лампового усилителя

Стабилизированный источник питания для лампового усилителя

Источник питания (ИП) является обязательной частью любой радиоэлектронной аппаратуры. Его качество, т.е. надёжность, экономичность, эксплуатационные свойства — в значительной мере определяет технические показатели всего аппарата. Постоянное повышение требований к техническим характеристикам усилительных устройств приводит к тому, что и к вторичным ИП предъявляются всё более жёсткие требования.

Анализ большинства серийных ламповых усилителей показывает, что ИП в них построен по традиционной схеме: сетевой трансформатор, выпрямитель (на диодах или кенотронах) и сглаживающий фильтр с конденсаторами, резисторами и дросселями). Напряжение такого ИП обычно нестабильно, из-за чего меняются режимы работы усилителя. При этом выходная мощность падает, а нелинейные искажения, наоборот, растут.

Сейчас очень популярны однотактники на прямонакальных триодах — 6С4С, 2А3, 300В и ГМ-70. Как правило, их выходная мощность невелика — от 3,5 до 25 Вт, и многие разработчики поддаются соблазну построить ИП по упрощенной схеме с П-фильтром. А между тем, звучание этих усилителей, как никаких других, зависит от качества питающего их источника. Более того, некоторые недостатки, считающиеся неотъемлемым атрибутом однотактных выходных каскадов и ограничивающие их распространение, — слабая динамика в нижнем диапазоне и плохо артикулированный бас — в 90 случаях из 100 являются следствием неправильной организации питания.

Многие пытаются решить проблему, наращивая ёмкость конденсаторов фильтра и увеличивая габариты выходного трансформатора. Это дает некоторый выигрыш в звучании, но главные проблемы остаются. И потом, до какой степени стоит наращивать ёмкости в блоке питания? Раньше в ходу был параметр «энергоёмкость ИП», выраженный в джоулях на ватт выходной мощности. Энергия, запасенная в конденсаторах фильтра, рассчитывается по формуле:

А = 1/2 * U2 * C,  где А — в джоулях; U — в вольтах; С — в фарадах.

Если же А поделить на Pвых., то получим величину, характеризующую энергетические показатели усилителя. У серийных зарубежных усилителей эта величина находится в пределах 1,5 — 2,5 Дж/Вт. Много это или мало? Сказать трудно, хотя и позволяет в какой-то мере судить об энерговооруженности аппарата.

Нашему КБ тоже пришлось столкнуться с такой проблемой. Несколько лет назад мы получили заказ на разработку однотактного лампового усилителя с выходной мощностью не менее 30 — 35 Вт. Требования были сформулированы так: аппарат должен иметь динамику двухтактного, бас — как у транзисторного, а эмоциональность и музыкальность — как у однотактника. Ничего себе задачка? Не стану подробно описывать все муки творчества, скажу только, что в конце концов был выбран однотактный выходной каскад на двух 6С33С-В, запараллеленных через магнитный поток выходного трансформатора, причем с нагрузкой в цепи катода.

Когда мы сделали макет, выяснилось, что на номинальной мощности при изменении частоты сигнала от 400 до 40 Гц анодное напряжение падало с 200 до 160 В. Источник, несмотря на солидный запас мощности, не держал. Прослушивание музыки, богатой НЧ-составляющими, подтвердило результаты стендовых измерений: бас прорабатывался вяло.

Пришлось взяться за стабилизированный ИП, и чтобы не нарушать чистоту ламповой концепции, в качестве проходной выбрали лампу 6С33С-В. Которая, кстати, изначально и разрабатывалась для этих целей, поэтому наряду с большой токоотдачей имеет очень низкое внутреннее сопротивление. Но прежде чем перейти к описанию конструкции, рассмотрим общие принципы построения стабилизаторов напряжения.Чаще всего применяются параметрические и компенсационные, причем последние бывают последовательные и параллельные (об этом уже успел рассказать Андрей Маркитанов, поэтому опустим подробности. — Прим. ред.). Параметрические — наиболее простые, они строятся на газоразрядных или кремниевых стабилитронах. Номенклатура последних довольно широка, что позволяет строить стабилизаторы с выходным напряжением от единиц до сотен вольт. Но любая простая схема далека от совершенства. В параметрическом стабилизаторе ток через нагрузку всегда должен быть меньше, чем через сам стабилитрон, поэтому к.п.д. таких стабилизаторов низок, и они уместны лишь при малой мощности потребителя.

Компенсационные стабилизаторы последовательного типа обладают хорошим к.п.д., высоким коэффициентом стабилизации и малым выходным сопротивлением. Поэтому они и получили столь широкое распространение. Однако и у них есть недостатки — низкая надёжность при перегрузках и коротком замыкании в нагрузке. Это особенно опасно в транзисторных схемах, поэтому приходится вводить в них сложные системы защиты с токовыми датчиками. Неоспоримое достоинство параллельных стабилизаторов — нечувствительность к форс-мажорным ситуациям. При к.з. в нагрузке напряжение на регулирующем элементе и ток, протекающий через него, резко уменьшаются, и никаких фатальных последствий не бывает. Но у параллельных стабилизаторов такие важные параметры, как к.п.д. и выходное сопротивление, оставляют желать лучшего. Стабилизирующие же качества обоих типов примерно одинаковы.

Поэтому наш выбор пал на последовательный стабилизатор, ведь лампы менее чувствительны к перегрузкам и к.з. Да и схема получается простой и надежной.

Упрощенно принцип ее работы показан на рис. 1.
По сути, это управляемый делитель напряжения, в верхнем плече которого включён регулирующий элемент РЭ, а в нижнем — нагрузка Rн. У такого стабилизатора входной ток Iвх примерно равен току нагрузки Iн, и как следствие — высокий к.п.д. и малое потребление в режиме х.х. (при Iн = 0). Работает он следующим образом. При увеличении Uвх или уменьшении Iн, напряжение Uвых повышается, в результате чего напряжение на выходе измерительного элемента И превысит опорное Uо. В этом случае на выходе элемента сравнения ЭС будет напряжение Uc = UнКд-Uо (где Кд — коэффициент деления выходного напряжения измерительным элементом). Это напряжение повышается усилителем постоянного тока УПТ и поступает на регулирующий элемент РЭ. Под действием управляющего напряжения Uу падение напряжения на РЭ будет увеличиваться, а на выходе стабилизатора — уменьшаться. Этим обеспечивается обратное слежение (тот самый случай, когда без ООС не обойтись). В установившемся режиме выходное напряжение стабилизатора сохраняется практически постоянным. Его нестабильность при воздействии дестабилизирующих факторов будет тем меньше, чем больше коэффициент усиления УПТ.

Итак, конкретный пример (рис. 2).

Увеличить фото



Как видите, нам пришлось стабилизировать не только анодное напряжение выходных ламп, но также драйвера и сеточных цепей. Это из-за того, что «просадка» источника сказывалась и на питании каскадов предварительного усиления, правда, в меньшей степени — отклонения от номинального значения были примерно 20 — 25%. Поскольку потребляемый ток здесь невелик, мы применили параметрический стабилизатор.Описываемым ИП комплектуются усилители с выходной мощностью до 16 Вт в каждом канале. При необходимости напряжения на выходе можно изменить, устанавливая газовые стабилитроны с большим или меньшим напряжением стабилизации.

Детали и конструкция

Мы старались использовать по возможности широко распространённые и недорогие радиоэлементы — резисторы типа МЛТ, пленочные конденсаторы К73-17 и т.д. А вот электролитические конденсаторы желательно приобрести импортные, поскольку применение отечественных значительно увеличит габариты блока. Хотя на качестве и надежности источника это не скажется.

Лампы тоже не дефицитны — 6С33С-В, 6С19П, 6Н2П, СГ1П, СГ2П (СГ15-2). Можно применить стабилитроны и октальной серии, они красиво горят, но занимают больше места. Выпрямители построены на высокочастотных диодах 2Д213А, хотя можно использовать и «быстрые» импортные на соответствующие токи и напряжения. От кенотронов мы отказались из-за того, что они в данной конструкции усилителя ухудшали динамику.

Трансформаторы — основа любого ИП, и на них хочу остановиться более подробно. Дело в том, что при питании выходных каскадов, работающих в классе А, потребление энергии происходит постоянно и ток почти не зависит от амплитуды выходного сигнала. При этом сетевые трансформаторы всегда работают с полной нагрузкой. А так как к.п.д. усилителя класса А довольно низок, в лучшем случае это где-то 25%, а то и меньше, то потери в ИП довольно велики. Как правило, все они превращаются в тепло, и его необходимо отводить, иначе блок станет перегреваться, со всеми вытекающими неприятностями. Практика конструирования усилителей подобного рода в нашем КБ показала, что для надёжной работы без перегрева и гудения необходим 3 — 4-кратный запас габаритной мощности сетевого трансформатора по отношению к потребляемой. То есть, если ваш усилитель потребляет 100 Вт, выбирайте 300 — 400-ваттное железо, не ошибётесь.

В нашем же случае речь идёт о потреблении порядка 250 — 265 Вт, так что мощность сетевого трансформатора желательно иметь порядка 800 — 900 Вт. Из конструктивных соображений мы изготовили два трансформатора по 440 Вт и распределили нагрузку на них по возможности равномерно. В соответствии с вышеизложенными рекомендациями потребление от каждого из них составляет 120 — 130 Вт.

Обратите внимание, что напряжения на выводах трансформаторов указаны в режиме холостого хода.

Конструкция

Источник питания собран на каркасе размером 260 х 150 х 370 мм (Ш х В х Г), выполненном из алюминиевых уголков 15 х 15. На нем установлены трансформаторы и дроссели, а также плата стабилизатора. Снизу к каркасу прикреплены четыре опорные ножки и поддон. Лицевая панель выполнена из алюминия толщиной 5 — 8 мм, на ней находятся сетевой переключатель и индикатор включения. На задней стенке (алюминий толщиной 2 мм) установлен сетевой ввод, предохранитель, а также разъём, соединяющий источник питания с усилителем. Последний может быть любым, но учтите, что по цепям накала лампа 6С33С (а у нас их в усилителе две) потребляет 6,6 А, так что хотя бы пара контактов должна быть рассчитана на большой ток. Соединение с усилителем выполнено гибким жгутом длинной 0,5 — 0,75 м из провода типа МГТФ-0,35. В накальные линии необходимо заложить провод сечением не менее 5 мм2. Сверху каркас закрыт перфорированным кожухом.

Технические данные трансформаторов и дросселей

Т1 — анодный
Сердечник ПЛ 25 х 50 х 80, Рг 440 ВА, к = 4 витка/В
Обмотка Uхх витков провод, тип, диаметр
W1 220 880 (2 х 440) ПЭВ-2-0,71
W2 280 1120 (2 х 560) ПЭВ-2-0,56
Т2 — накально-анодный
Сердечник ПЛ 25 х 50 х 80, Рг 440 ВА, к = 4 витка/В
W1 220 880 (2 х 440) ПЭВ-2-0,71
W2 330 1320 (2 х 660) ПЭВ-2-0,4
W3 125 500 (2 х 250) ПЭВ-2-0,2
W4 6,5 26 (2 х 13) ПЭВ-2-2,49 отвод от середины
W5 6,5 26 (2 х 13) ПЭВ-2-1,8
W6 6,5 26 (2 х 13) ПЭВ-2-0,85 отвод от середины
D1 Сердечник ШЛ 16 х 20 х 50
W ~ 1800 ПЭВ-2-0,45 мм, мотать в навал до заполнения каркаса
D1 Сердечник ШЛ 16 х 20 х 50
ПЭВ-2-0,2 мм, мотать в навал до заполнения каркаса


Регулировка блока питания

Сначала невредно убедиться, что все обмотки двухкатушечных трансформаторов скоммутированы правильно и на их выводах присутствуют именно те напряжения, на которые вы рассчитывали. Затем подключаем стабилизаторы и вольтметром проверяем поочерёдно режимы каждого звена. В отличие от параллельных стабилизаторов последовательные можно включать без нагрузки, что мы и делаем. После 5 — 10-минутного прогрева устанавливаем подстроечными резисторами RT1 и RT2 выходные напряжения +210 и +350 В соответственно. Запас по регулированию должен быть примерно 20% в обе стороны. Затем подключаем эквивалент нагрузки. Для мощного каскада это может быть обычная лампа накаливания 100 Вт на 220 В, а для драйверного звена — резистор типа ПЭВ-50 сопротивлением 3500 Ом. Под нагрузкой напряжение не должно просаживаться более чем на 0,5 — 1 В. Погоняйте блок в таком режиме несколько часов, и если в схеме ничего не дымит и не перегревается, работу можно считать законченной.

Теперь посмотрим, стоило ли вообще затевать весь этот проект. Первое, что мы отметили после подключения усилителя, — стабильность его режимов при изменении напряжения питающей сети. При скачках на линии от +5% и -10% (а у нас в Таганроге бывает и больше) анодные, и что особенно важно, сеточные потенциалы не менялись. Сравнительное прослушивание двух аналогичных усилителей с разными ИП — традиционным и стабилизированным — показало, что последний явно обладает лучшей энергетикой. Звучание становится более плотным и насыщенным во всём спектре частот, улучшается микро- и макродинамика.

Эмоциональный эффект примерно тот же, что при сравнении усилителей с ООС и без неё. Слушать аппарат с нестабилизированным источником питания уже не хочется.

Владимир Стародубцев (ака Дед)

Комментарии

Всего комментариев 36


Читать все комментарии (36)



||


Главная страница > Российский Hi-End > Клуб "у Деда" > Стабилизированный источник питания для лампового усилителя